# Run full GO enrichment test formula_res <- compareCluster( ENTREZID~cluster, data=de_gene_clusters, fun="enrichGO", OrgDb="org.Mm.eg.db", ont = "BP", pAdjustMethod = "BH", pvalueCutoff = 0.01, qvalueCutoff = 0.05 )
# Run GO enrichment test and merge terms # that are close to each other to remove result redundancy lineage1_ego <- simplify( formula_res, cutoff=0.5, by="p.adjust", select_fun=min )
感興趣的可以把這個(gè)結(jié)果跟3個(gè)出名的網(wǎng)頁工具進(jìn)行比較
https://amp.pharm.mssm.edu/Enrichr/
http://www.webgestalt.org/
https://biit.cs.ut.ee/gprofiler
另外,強(qiáng)推Y叔clusterProfiler的一些可視化方法
可視化方法函數(shù)列表:
barplot
cnetplot
dotplot
emapplot
gseaplot
goplot
upsetplot
好幾個(gè)都是以前沒有介紹過的,有趣的是我準(zhǔn)備瀏覽這些可視化函數(shù)的幫助文檔的時(shí)候,看到了這樣的話:重點(diǎn)來了,Y叔特意為其包寫了一本書來介紹其用法。Please go to https://yulab-smu.github.io/clusterProfiler-book/ for the full vignette.