今天的文章是關(guān)于膠質(zhì)母細(xì)胞瘤,標(biāo)題是Mining TCGA database for genes of prognostic value in glioblastoma microenvironment,銜接我們上次的R包“estimate”。作者用分析出的”StromalScore“和”ImmuneScore“對TCGA數(shù)據(jù)進(jìn)行了重新分組,并進(jìn)行了一系列后續(xù)的下游分析。
P值0.05界限為什么不好(純R代碼復(fù)現(xiàn)一篇數(shù)據(jù)挖掘文章) (這個是R包“ESTIMATE”的教程)
首先還是下載表達(dá)數(shù)據(jù)、臨床信息以及突變矩陣,然后對數(shù)據(jù)進(jìn)行簡單的過濾。
if (!file.exists( './data/TCGA-GBM.Rdata' )) {
gzfile <- './raw_data/TCGA-GBM.AffyU133a_log2.tsv.gz'
download.file('https://tcga.xenahubs.net/download/TCGA.GBM.sampleMap/HT_HG-U133A.gz',
destfile = gzfile)
library(R.utils)
gunzip(gzfile, remove = F)
library(data.table)
raw_data <- fread( './raw_data/TCGA-GBM.AffyU133a_log2.tsv',
sep = ' ', header = T)
raw_data <- as.data.frame( raw_data )
raw_data[1:5, 1:6]
rownames( raw_data ) <- raw_data[, 1]
raw_data <- raw_data[, -1]
raw_data[1:5, 1:6]
raw_data <- 2^raw_data - 1
raw_data <- ceiling( raw_data )
raw_data[1:5, 1:6]
pick_row <- apply( raw_data, 1, function(x){
sum(x == 0) < 10
})
raw_data <- raw_data[pick_row, ]
dim(raw_data )
save( raw_data, file = './data/TCGA-GBM.Rdata' )
}else{
load('./data/TCGA-GBM.Rdata')
}
# Step2 Grouping by special clinical information --------------------------
if (!file.exists( './data/TCGA-GBM_phenotype.Rdata' )) {
gzfile <- './raw_data/TCGA-GBM_phenotype.tsv.gz'
## download.file('https://gdc.xenahubs.net/download/TCGA-BRCA/Xena_Matrices/TCGA-BRCA.GDC_phenotype.tsv.gz',
## destfile = gzfile)
download.file('https://tcga.xenahubs.net/download/TCGA.GBM.sampleMap/GBM_clinicalMatrix.gz',
destfile = gzfile)
phenoData <- read.table( gzfile,
header = T,
sep = ' ',
quote = '' )
name <- phenoData[ , 1]
name <- gsub(pattern = '-', replacement = '.', name)
phenoData <- phenoData[ , -1]
rownames( phenoData ) <- name
phenoData[1:5, 1:3]
save( phenoData, file = './data/TCGA-GBM_phenotype.Rdata' )
}else{
load('./data/TCGA-GBM_phenotype.Rdata')
}
## Category 1.2: GBM: GeneExp_Subtype
## Pick columns that contains 'GeneExp_Subtype'
typePheno <- phenoData[, 'GeneExp_Subtype']
save(typePheno, file = './data/gbm_geneExp_sample.Rdata')
## Category 3: mutation
if (!file.exists( './data/TCGA-GBM.snv.Rdata' )) {
gzfile <- './raw_data/TCGA-GBM.snv.tsv.gz'
## download.file('https://gdc.xenahubs.net/download/TCGA-BRCA/Xena_Matrices/TCGA-BRCA.mutect2_snv.tsv.gz',
## destfile = gzfile)
download.file('https://tcga.xenahubs.net/download/TCGA.GBM.sampleMap/mutation_broad.gz',
destfile = gzfile)
library(R.utils)
gunzip(gzfile, remove = F)
mutype_file <- read.table( './raw_data/TCGA-GBM.snv.tsv',
header = T,
sep = ' ',
quote = '' )
save( mutype_file, file = './data/TCGA-GBM.snv.Rdata' )
}else{
load('./data/TCGA-GBM.snv.Rdata')
}
這里根據(jù)臨床信息中的,'GeneExp_Subtype'對數(shù)據(jù)進(jìn)行了分組。用”estimate“R包得到的結(jié)果,根據(jù)其中的'StromalScore' ,'ImmuneScore'可以得到兩個分類。并且文章還根據(jù)突變IDH進(jìn)行了分類。一共有四個分類。后續(xù)我們只用到了StromalScore' ,'ImmuneScore'的分類。
# Step1 Install packages --------------------------------------------------
library(utils)
rforge <- 'http://r-forge.r-project.org'
install.packages('estimate', repos = rforge, dependencies = TRUE)
# Step2 calculate tumor purity --------------------------------------------
library(estimate)
write.table(as.data.frame(raw_data), './data/varianCancerExpr.txt',
quote = FALSE, sep = ' ')
filterCommonGenes(input.f = './data/varianCancerExpr.txt',
output.f = './data/genes.gct', id = 'GeneSymbol')
estimateScore('./data/genes.gct', './data/estimate_score.gct',
platform = 'affymetrix')
## read result
estimate_score <- read.table('./data/estimate_score.gct',
sep = ' ', skip = 2,
header = T)
rownames(estimate_score) <- estimate_score[, 1]
estimate_score <- as.data.frame(t(estimate_score[, -c(1,2)]))
estimate_score[1:5, 1:4]
## type1-gene_Exp
estimate_score <- estimate_score[rownames(estimate_score) %in% names(typePheno),]
typePheno <- typePheno[names(typePheno) %in% rownames(estimate_score)]
estimate_score <- estimate_score[names(typePheno), ]
estimate_score$type <- as.character(typePheno)
estimate_score <- estimate_score[estimate_score[,5] != '', ]
## type2-WHO-IDH1
name <- mutype_file[,1]
name <- gsub(pattern = '-', replacement = '.', name)
mutype_file[,1] <- name
mutation <- mutype_file[mutype_file[, 7] == 'IDH1', 1]
typeIDH <- ifelse(rownames(estimate_score) %in% mutype_file[,1],
ifelse(rownames(estimate_score) %in% mutation, 'IDH_mutat', 'IDH-wildtype'),
'NOS')
estimate_score$type <- as.character(typeIDH)
estimate_score <- estimate_score[estimate_score[,5] != 'NOS', ]
## type3-ImmuneScore
estimate_score <- estimate_score[order(estimate_score[,2]),]
typeImmune <- c(rep('Low', floor(length(rownames(estimate_score))/2)),
rep('High', ceiling(length(rownames(estimate_score))/2)))
names(typeImmune) <- rownames(estimate_score)
## type4-StromalScore
estimate_score <- estimate_score[order(estimate_score[,1]),]
typeStromal <- c(rep('Low', floor(length(rownames(estimate_score))/2)),
rep('High', ceiling(length(rownames(estimate_score))/2)))
names(typeStromal) <- rownames(estimate_score)
ggboxplot(estimate_score, x = 'type', y = 'ImmuneScore',
color = 'type', palette = c('#00AFBB', '#E7B800', '#FC4E07', '#c00000'),
add = 'jitter', shape = 'type') + stat_compare_means(label.y = 3500)
ggboxplot(estimate_score, x = 'type', y = 'StromalScore',
color = 'type', palette = c('#00AFBB', '#E7B800', '#FC4E07', '#c00000'),
add = 'jitter', shape = 'type') + stat_compare_means(label.y = -2000)
## OS
library(survival)
os.model <- phenoData[, c('OS.time', 'OS')]
os.model <- os.model[rownames(os.model) %in% names(typeStromal),]
os.model <- os.model[names(typeStromal),]
os.model$type <- typeStromal
fit <- survfit(Surv(OS.time, OS) ~ type, data = os.model)
library(survminer)
ggsurvplot(fit,
pval = TRUE, conf.int = TRUE,
linetype = 'type',
surv.median.line = 'hv',
ggtheme = theme_bw(),
palette = c('#E7B800', '#2E9FDF')
)
os.model <- os.model[rownames(os.model) %in% names(typeImmune),]
os.model <- os.model[names(typeImmune),]
os.model$type <- typeImmune
fit <- survfit(Surv(OS.time, OS) ~ type, data = os.model)
library(survminer)
ggsurvplot(fit,
pval = TRUE, conf.int = TRUE,
linetype = 'type',
surv.median.line = 'hv',
ggtheme = theme_bw(),
palette = c('#E7B800', '#2E9FDF')
)
下面是StromalScore分類得到的生存分析結(jié)果
下面是ImmuneScore分類得到的生存分析結(jié)果
draw_heatmap <- function(nrDEG, type){
library( 'pheatmap' )
nrDEG_Z = nrDEG[ order( nrDEG$logFC ), ]
nrDEG_F = nrDEG[ order( -nrDEG$logFC ), ]
choose_gene = c( rownames( nrDEG_Z )[1:50], rownames( nrDEG_F )[1:50] )
choose_matrix = AssayData[ choose_gene, ]
choose_matrix = t( scale( t( choose_matrix ) ) )
choose_matrix[choose_matrix > 2] = 2
choose_matrix[choose_matrix < -2] = -2
annotation_col = data.frame( CellType = factor( group_list ) )
rownames( annotation_col ) = colnames( AssayData )
filename <- paste('./fig/', type, '_heatmap_top100_logFC.png',
sep = '', collapse = NULL)
pheatmap( fontsize = 6, choose_matrix, annotation_col = annotation_col,
show_rownames = T, show_colnames = F,
annotation_legend = T, cluster_cols = F,
filename = filename)
}
draw_volcano <- function(nrDEG, type){
library( 'ggplot2' )
logFC_cutoff <- with( nrDEG, mean( abs( logFC ) ) + 2 * sd( abs( logFC ) ) )
nrDEG$change = as.factor( ifelse(
nrDEG$P.Value < 0.01 & abs(nrDEG$logFC) > logFC_cutoff,
ifelse( nrDEG$logFC > logFC_cutoff, 'UP', 'DOWN' ), 'NOT' ) )
nrDEGfile <- paste('./data/', type, '_nrDEG_by_logFC.Rdata',
sep = '', collapse = NULL)
save( nrDEG, file = nrDEGfile )
this_tile <- paste0(
'Cutoff for logFC is ', round( logFC_cutoff, 3 ),
'
The number of up gene is ', nrow(nrDEG[ nrDEG$change == 'UP', ] ),
'
The number of down gene is ', nrow(nrDEG[ nrDEG$change == 'DOWN', ] ) )
volcano = ggplot(data = nrDEG,
aes( x = logFC, y = -log10(P.Value), color = change)) +
geom_point( alpha = 0.4, size = 1.75 ) +
theme_set( theme_set( theme_bw( base_size = 15 ) ) ) +
xlab( 'log2 fold change' ) + ylab( '-log10 p-value' ) +
ggtitle( this_tile ) +
theme( plot.title = element_text( size = 15, hjust = 0.5 )) +
scale_colour_manual( values = c('blue','black','red') )
print( volcano )
filename <- paste('./fig/', type, '_volcano_logFC.png',
sep = '', collapse = NULL)
ggsave( volcano, filename = filename )
dev.off()
}
AssayData <- raw_data
names(typeImmune) <- gsub(pattern = '\.', replacement = '-', names(typeImmune))
AssayData <- AssayData[, colnames(AssayData) %in% names(typeImmune)]
AssayData <- AssayData[, names(typeImmune)]
group_list <- typeImmune
AssayData <- raw_data
names(typeStromal) <- gsub(pattern = '\.', replacement = '-', names(typeStromal))
AssayData <- AssayData[, colnames(AssayData) %in% names(typeStromal)]
AssayData <- AssayData[, names(typeStromal)]
group_list <- typeStromal
# Step3 Lastly run voom from limma ----------------------------------------
library(limma)
## A list-based S4 class for storing read counts and associated information
## from digital gene expression or sequencing technologies.
DGElist <- DGEList( counts = AssayData, group = factor(group_list) )
## Counts per Million or Reads per Kilobase per Million
keep_gene <- rowSums( cpm(DGElist) > 1 ) >= 2
table(keep_gene)
DGElist <- DGElist[ keep_gene, , keep.lib.sizes = FALSE ]
## Calculate Normalization Factors to Align Columns of a Count Matrix
DGElist <- calcNormFactors( DGElist )
DGElist$samples
design <- model.matrix( ~0 + factor(group_list) )
rownames(design) <- colnames(DGElist)
colnames(design) <- levels(factor(group_list))
## Transform RNA-Seq Data Ready for Linear Modelling
v <- voom(DGElist, design, plot = TRUE, normalize = 'quantile')
## Fit linear model for each gene given a series of arrays
fit <- lmFit(v, design)
## Construct the contrast matrix corresponding to specified contrasts of a set
## of parameters.
cont.matrix <- makeContrasts(contrasts = c('Low-High'), levels = design)
## Given a linear model fit to microarray data, compute estimated coefficients
## and standard errors for a given set of contrasts.
fit2 <- contrasts.fit(fit, cont.matrix)
## Empirical Bayes Statistics for Differential Expression
fit2 <- eBayes(fit2)
nrDEG_limma_voom = topTable(fit2, coef = 'Low-High', n = Inf)
nrDEG_limma_voom = na.omit(nrDEG_limma_voom)
head(nrDEG_limma_voom)
draw_heatmap(nrDEG = nrDEG_limma_voom, type = 'limma_voom')
draw_volcano(nrDEG = nrDEG_limma_voom, type = 'limma_voom')
# Step4 Compare ---------------------------------------------
library('VennDiagram')
nrDEG_Z = nrDEG_limma_voom_immune[ order( nrDEG_limma_voom_immune$logFC ), ]
nrDEG_F = nrDEG_limma_voom_immune[ order( -nrDEG_limma_voom_immune$logFC ), ]
choose_gene_A = c( rownames( nrDEG_Z )[1:50], rownames( nrDEG_F )[1:350] )
nrDEG_Z = nrDEG_limma_voom_stromal[ order( nrDEG_limma_voom_stromal$logFC ), ]
nrDEG_F = nrDEG_limma_voom_stromal[ order( -nrDEG_limma_voom_stromal$logFC ), ]
choose_gene_B = c( rownames( nrDEG_Z )[1:50], rownames( nrDEG_F )[1:350] )
## Venn Diagram
venn.plot <- venn.diagram(x = list(A = choose_gene_A, B = choose_gene_B),
filename = 'DIFF.png', height = 450, width = 450,
resolution = 300, imagetype = 'png', col = 'transparent',
fill = c('cornflowerblue', 'darkorchid1'),
alpha = 0.50, cex = 0.45, cat.cex = 0.45)
先是stromal_Score的分組繪制的熱圖和火山圖
之后是immnue_Score的分組繪制的熱圖和火山圖
比較一下共有的基因情況
## function of KEGG pathway
kegg_plot <- function(type) {
kk.up <- enrichKEGG( gene = gene_up ,
organism = 'hsa' ,
universe = gene_all ,
pvalueCutoff = 0.8 ,
qvalueCutoff = 0.8 )
kk.down <- enrichKEGG( gene = gene_down ,
organism = 'hsa' ,
universe = gene_all ,
pvalueCutoff = 0.8 ,
qvalueCutoff = 0.8 )
library( 'ggplot2' )
kegg_down_dt <- as.data.frame( kk.down )
kegg_up_dt <- as.data.frame( kk.up )
down_kegg <- kegg_down_dt[ kegg_down_dt$pvalue < 0.05, ]
down_kegg$group <- -1
up_kegg <- kegg_up_dt[ kegg_up_dt$pvalue < 0.05, ]
up_kegg$group <- 1
dat = rbind( up_kegg, down_kegg )
dat$pvalue = -log10( dat$pvalue )
dat$pvalue = dat$pvalue * dat$group
dat = dat[ order( dat$pvalue, decreasing = F ), ]
g_kegg <- ggplot( dat,
aes(x = reorder( Description, order( pvalue, decreasing = F )),
y = pvalue, fill = group)) +
geom_bar( stat = 'identity' ) +
scale_fill_gradient( low = 'blue', high = 'red', guide = FALSE ) +
scale_x_discrete( name = 'Pathway names' ) +
scale_y_continuous( name = 'log10P-value' ) +
coord_flip() + theme_bw() +
theme( plot.title = element_text( hjust = 0.5 ),
axis.text.x = element_text(size = 10),
axis.text.y = element_text(size = 7)) +
ggtitle( 'Pathway Enrichment' )
print( g_kegg )
filename <- paste('./fig/kegg_up_down_', type, '.png', sep = '', collapse = NULL)
ggsave( g_kegg, filename = filename )
}
## function of GO pathway
go_plot <- function(type) {
go_enrich_results <- lapply( g_list, function(gene) {
lapply( c( 'BP', 'MF', 'CC' ) , function(ont) {
cat( paste( 'Now process', ont ) )
ego <- enrichGO( gene = gene,
universe = gene_all,
OrgDb = org.Hs.eg.db,
ont = ont ,
pAdjustMethod = 'BH',
pvalueCutoff = 0.99,
qvalueCutoff = 0.99,
readable = TRUE)
print( head( ego ) )
return( ego )
})
})
gofilename <- paste('./data/go_enrich_result', type, '.Rdata',
sep = '', collapse = NULL)
save( go_enrich_results, file = gofilename )
n1 = c( 'gene_up', 'gene_down', 'gene_diff' )
n2 = c( 'BP', 'MF', 'CC' )
for (i in 1:3) {
for (j in 1:3) {
fn = paste0( './fig/dotplot_', n1[i], '_', n2[j], '_', type, '.png' )
cat( paste0( fn, '
' ) )
png( fn, res = 150, width = 1080 )
print( dotplot( go_enrich_results[[i]][[j]] ) )
dev.off()
}
}
}
# Step1 annotation --------------------------------------------------------
library( 'clusterProfiler' )
library( 'org.Hs.eg.db' )
keytypes(org.Hs.eg.db)
library('stringr')
nrDEG <- nrDEG_limma_voom_immune
nrDEG <- nrDEG_limma_voom_stromal
logFC_cutoff <- with( nrDEG, mean( abs( logFC ) ) + 2 * sd( abs( logFC ) ) )
nrDEG$change = as.factor( ifelse(
nrDEG$P.Value < 0.01 & abs(nrDEG$logFC) > logFC_cutoff,
ifelse( nrDEG$logFC > logFC_cutoff, 'UP', 'DOWN' ), 'NOT' ) )
nrDEG_limma_voom_immune <- nrDEG
nrDEG_limma_voom_stromal <- nrDEG
## tans1: ENSEMBL2ENTREZID
table( nrDEG$change )
rownames( nrDEG ) <- str_sub(rownames( nrDEG ), start = 1, end = 15)
nrDEG$SYMBOL <- rownames( nrDEG )
df <- bitr( rownames( nrDEG ), fromType = 'SYMBOL', toType = c( 'ENTREZID' ),
OrgDb = org.Hs.eg.db )
head( df )
nrDEG = merge( nrDEG, df, by = 'SYMBOL' )
head( nrDEG )
gene_up = nrDEG[ nrDEG$change == 'UP', 'ENTREZID' ]
gene_down = nrDEG[ nrDEG$change == 'DOWN', 'ENTREZID' ]
gene_diff = c( gene_up, gene_down )
gene_all = as.character(nrDEG[ ,'ENTREZID'] )
g_list = list( gene_up = gene_up, gene_down = gene_down, gene_diff = gene_diff)
# Step2 pathway analysis ------------------------------------------
kegg_plot('limma_voom')
go_plot('limma_voom')
下面是”StromalScore“分類后差異分析的通路結(jié)果
下面是”immnue_Score“分類后差異分析的通路結(jié)果
代碼由生信技能樹學(xué)徒獨(dú)立完成,我并沒有進(jìn)行任何干預(yù)!
如果你看不懂上面的圖和R代碼,也不會制作,那么你可能需要下面的學(xué)習(xí)班: