免费视频淫片aa毛片_日韩高清在线亚洲专区vr_日韩大片免费观看视频播放_亚洲欧美国产精品完整版

打開(kāi)APP
userphoto
未登錄

開(kāi)通VIP,暢享免費(fèi)電子書(shū)等14項(xiàng)超值服

開(kāi)通VIP
enrichplot: 讓你們對(duì)clusterProfiler系列包無(wú)法自拔

先來(lái)一段搞笑的街頭賣(mài)膏藥的視頻,大家可以?shī)蕵?lè)一下再繼續(xù)往下看,因?yàn)槲医酉聛?lái)就是要賣(mài)Y叔版「膏藥」!


大家喜歡clusterProfiler,除了功能強(qiáng)大、支持廣泛之外,我想還有一點(diǎn)必須是可視化,畢竟大家都是視覺(jué)動(dòng)物,顏值即正義。然而這些都是我早期的代碼,我其實(shí)一直想重新寫(xiě),希望可以全部用gplot2來(lái)實(shí)現(xiàn),方便后續(xù)維護(hù)、更好看、更強(qiáng)大。而這在我博士畢業(yè)后,終于找了個(gè)時(shí)間重寫(xiě)了一遍,并且也加入了部分新的圖形,我把這些代碼重新打包,已經(jīng)在Bioconductor上,叫enrichplot。有了這個(gè)包,你們更加對(duì)clusterProfiler系列包無(wú)法自拔,讓其它的工具毫無(wú)顏色。

The enrichplot package implements several methods for enrichment result visualization to help interpretation. It supports both hypergeometric test and gene set enrichment analysis. Both of them are widely used to characterize pathway/function relationships to elucidate molecular mechanisms from high-throughput genomic data.

The enrichplot package supports visualizing enrichment results obtained from
DOSE (Yu et al. 2015), clusterProfiler (Yu et al. 2012), ReactomePA (Yu and He 2016) and meshes.

Induced GO DAG graph

Gene Ontology (GO) is organized as a directed acyclic graph. An insighful way of looking at the results of the analysis is to investigate how the significant GO terms are distributed over the GO graph. The goplot function shows subgraph induced by most significant GO terms.

library(clusterProfiler)
data(geneList, package='DOSE')
de <->abs(geneList) > 2]
ego <- enrichgo(de,="" orgdb="">'org.Hs.eg.db', ont='BP', readable=TRUE)
library(enrichplot)
goplot(ego)

Bar plot

Bar plot is the most widely used method to visualize enriched terms. It depicts the enrichment scores (e.g. p values) and gene count or ratio as bar height and color.

barplot(ego, showCategory=20)

Dot plot

Dot plot is similar to bar plot with the capability to encode another score as dot size. Both barplot and dotplot supports facetting to visualize sub-ontologies simultaneously.

dotplot(ego, showCategory=30)

go <- enrichgo(de,="" orgdb="">'org.Hs.eg.db', ont='all')
dotplot(go, split='ONTOLOGY') + facet_grid(ONTOLOGY~., scale='free')

Gene-Concept Network

Both the barplot and dotplot only displayed most significant enriched terms, while users may want to know which genes are involved in these significant terms. The cnetplot depicts the linkages of genes and biological concepts (e.g. GO terms or KEGG pathways) as a network.

## remove redundent GO terms
ego2 <->
cnetplot(ego2, foldChange=geneList)

cnetplot(ego2, foldChange=geneList, circular = TRUE, colorEdge = TRUE)

UpSet Plot

The upsetplot is an alternative to cnetplot for visualizing the complex association between genes and gene sets. It emphasizes the gene overlapping among different gene sets.

upsetplot(ego)

Heatmap-like functional classification

The heatplot is similar to cnetplot, while displaying the relationships as a heatmap. The gene-concept network may become too complicated if user want to show a large number significant terms. The heatplot can simplify the result and more easy to identify expression patterns.

heatplot(ego2)

heatplot(ego2, foldChange=geneList)

Enrichment Map

Enrichment map organizes enriched terms into a network with edges connecting overlapping gene sets. In this way, mutually overlapping gene sets are tend to cluster together, making it easy to identify functional module.

emapplot(ego2)

ridgeline plot for expression distribution of GSEA result

The ridgeplot will visualize expression distributions of core enriched genes for GSEA enriched categories. It helps users to interpret up/down-regulated pathways.

kk - gseKEGG(geneList, nPerm=10000)
ridgeplot(kk)

running score and preranked list of GSEA result

Running score and preranked list are traditional methods for visualizing GSEA result. The enrichplot package supports both of them to visualize the distribution of the gene set and the enrichment score.

gseaplot(kk, geneSetID = 1, by = 'runningScore', title = kk$Description[1])

gseaplot(kk, geneSetID = 1, by = 'preranked', title = kk$Description[1])

gseaplot(kk, geneSetID = 1, title = kk$Description[1])

References

Yu, Guangchuang, and Qing-Yu He. 2016. “ReactomePA: An R/Bioconductor Package for Reactome Pathway Analysis and Visualization.” Molecular BioSystems 12 (2): 477–79. doi:10.1039/C5MB00663E.

Yu, Guangchuang, Li-Gen Wang, Yanyan Han, and Qing-Yu He. 2012. “clusterProfiler: an R Package for Comparing Biological Themes Among Gene Clusters.” OMICS: A Journal of Integrative Biology 16 (5): 284–87. doi:10.1089/omi.2011.0118.

Yu, Guangchuang, Li-Gen Wang, Guang-Rong Yan, and Qing-Yu He. 2015. “DOSE: An R/Bioconductor Package for Disease Ontology Semantic and Enrichment Analysis.” Bioinformatics 31 (4): 608–9. doi:10.1093/bioinformatics/btu684.

給贊 給Y叔點(diǎn)個(gè)贊
小程序

本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶(hù)發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊舉報(bào)。
打開(kāi)APP,閱讀全文并永久保存 查看更多類(lèi)似文章
猜你喜歡
類(lèi)似文章
【R】clusterProfiler的GO/KEGG富集分析用法小結(jié)
GO analysis using clusterProfiler | Guangchuang YU
RNA-seq入門(mén)實(shí)戰(zhàn)(六):GO、KEGG富集分析與enrichplot超全可視化攻略
GEO數(shù)據(jù)挖掘小嘗試:(三)利用clusterProfiler進(jìn)行富集分析輸入標(biāo)題
得到差異分析之后進(jìn)行功能富集分析
擬南芥的基因ID批量轉(zhuǎn)換?差異基因,GO/KEGG數(shù)據(jù)庫(kù)注釋?zhuān)ㄞD(zhuǎn)錄組直接送你全套流程)
更多類(lèi)似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長(zhǎng)圖 關(guān)注 下載文章
綁定賬號(hào)成功
后續(xù)可登錄賬號(hào)暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服